Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available October 1, 2026
-
Free, publicly-accessible full text available March 1, 2026
-
Free, publicly-accessible full text available March 12, 2026
-
In this work, we theoretically study the switching and oscillation dynamics in strained non-collinear antiferromagnet (AFM) Mn3X (X = Sn, Ge, etc.). Using the perturbation theory, we identify three separable dynamic modes—one uniform and two optical modes, for which we analytically derive the oscillation frequencies and effective damping. We also establish a compact, vector equation for describing the dynamics of the uniform mode, which is in analogy to the conventional Landau–Lifshitz–Gilbert (LLG) equation for ferromagnet but captures the unique features of the cluster octuple moment. Extending our model to include spatial inhomogeneity, we are able to describe the excitations of dissipative spin wave and spin superfluidity state in the non-collinear AFM. Furthermore, we carry out numerical simulations based on coupled LLG equations to verify the analytical results, where good agreements are reached. Our treatment with the perturbative approach provides a systematic tool for studying the dynamics of non-collinear AFM and is generalizable to other magnetic systems in which the Hamiltonian can be expressed in a hierarchy of energy scales.more » « less
-
Hybrid dynamic systems combine advantages from different subsystems for realizing information processing tasks in both classical and quantum domains. However, the lack of controlling knobs in tuning system parameters becomes a severe challenge in developing scalable, versatile hybrid systems for useful applications. Here, we report an on-chip microwave photon–magnon hybrid system where the dissipation rates and the coupling cooperativity can be electrically influenced by the spin Hall effect. Through magnon–photon coupling, the linewidths of the resonator photon mode and the hybridized magnon polariton modes are effectively changed by the spin injection into the magnetic wires from an applied direct current, which exhibit different trends in samples with low and high coupling strengths. Moreover, the linewidth modification by the spin Hall effect shows strong dependence on the detuning of the two subsystems, in contrast to the classical behavior of a standalone magnonic device. Our results point to a direction of realizing tunable, on-chip, scalable magnon-based hybrid dynamic systems, where spintronic effects provide useful control mechanisms.more » « less
-
Abstract Unidirectional magnetoresistance (UMR) has been observed in a variety of stacks with ferromagnetic/spin Hall material bilayer structures. In this work, UMR in antiferromagnetic insulator Fe2O3/Pt structure is reported. The UMR has a negative value, which is related to interfacial Rashba coupling and band splitting. Thickness‐dependent measurement reveals a potential competition between UMR and the unidirectional spin Hall magnetoresistance (USMR). This work reveals the existence of UMR in antiferromagnetic insulators/heavy metal bilayers and broadens the way for the application of antiferromagnet‐based spintronic devices.more » « less
An official website of the United States government
